

## QSAR studies on biological oxygen demand of alcohols

Minati Kuanar, Saroj K Kuanar, Sabita Patel & B K Mishra\*

Centre of Studies in Surface Science and Technology, Department of Chemistry, Sambalpur University, Jyoti Vihar 768 019, India

E-mail: bijaym@hotmail.com

Received 27 October 2003; accepted (revised) 2 January 2006

A model for predicting the biological oxygen demand, and hence biodegradability of chemical substances, is proposed for some alcohols. A novel parameter, ThOD, has been used along with some other topological indices for construction of regression models. Statistical evaluation of the agreement between model predictions show that the compounds can be classified as highly degradable, moderately degradable and low-degradable alcohols.

**Keywords:** QSAR, theoretical oxygen demand, BOD, alcohol, topological indices, regression model

**IPC: Int.Cl.<sup>7</sup> C 07 C**

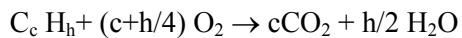
Organic matters upon oxidation degrade into gaseous compounds like carbon dioxide, sulphur dioxide, nitrogen dioxide and to water vapours. Oxidation may be carried out either by applying conventional chemical oxidants like potassium dichromate and potassium permanganate or by several microorganisms, which apply enzymes for the purpose. When water containing organic matter is discharged into river, lake or sea natural decomposition of organic matter through oxidation by biological agents takes place. The biochemical oxidation is brought about by naturally occurring microorganisms, which use the organic matter as a source of carbon.

Dissolved oxygen in water sustains respiration of aquatic organisms. Naturally, this is a simplified picture of a complex set of reactions, the rates of which depend on the temperature, the type of organic matter present, the type of microorganisms, the aeration, and the amount of light available<sup>1</sup>. The biological oxygen demand (BOD) test of a sample containing organic matters is an empirical bioassay type procedure, which measures the dissolved oxygen consumed by microbial organisms while assimilating and oxidizing the organic matters present. The sample in an appropriate dilution is incubated for 5 days at 20°C. The reduction in amount of dissolved oxygen results in the evaluation of BOD. The five days test has been generally adopted with the knowledge that this does not necessarily represent the time required for total oxidation of the organic matter present. In some cases, a test period of longer than five days is

specified. However, there is no acceptable procedure for determining the accuracy of the BOD test.

With so much of dependable factors, BOD has become a rare candidate for structure activity relationship (SAR) studies. Literature is almost silent in this area of research. Herein, an attempt has been made to model BOD using molecular parameters. Theoretical oxygen demand, ThOD (non-empirical, but based on chemical reaction), a novel molecular parameter has been proposed for the use in QSAR studies.

### Database


The biological oxygen demand (BOD) values collected from literature<sup>1</sup> are results of five days incubation of the organic matters at 20°C and are given in **Table I**.

### Evaluation of Theoretical Oxygen Demand (ThOD)

Microorganisms consume carbon from organic matter to convert it to carbon dioxide. Theoretical oxygen demand (ThOD) for the constituent carbon can be calculated by stoichiometric conversion of carbon to carbon dioxide and, hydrogen and oxygen to water. ThOD is a ratio of oxygen in grams required for complete oxidation of the organic molecule to corresponding oxides and the molecules in gram. For hydrocarbons the ThOD can be calculated by considering the following reaction.

**Table I**—BOD, ThOD, PC<sub>1</sub>, PC<sub>2</sub> and PC<sub>3</sub> values of 29 different alcohols

| Sl.No. | Compd                              | Mol. formula                                    | BOD   | ThOD  | PC <sub>1</sub> | PC <sub>2</sub> | PC <sub>3</sub> |
|--------|------------------------------------|-------------------------------------------------|-------|-------|-----------------|-----------------|-----------------|
| 1      | Methanol                           | CH <sub>4</sub> O                               | 1.12  | 1.50  | 6.650           | 1.349           | -1.663          |
| 2      | Ethanol                            | C <sub>2</sub> H <sub>6</sub> O                 | 1.67  | 2.10  | 4.293           | -0.054          | -0.372          |
| 3      | 2-Chloro ethanol                   | C <sub>2</sub> H <sub>5</sub> OCl               | 0.5   | 1.093 | 3.205           | 1.020           | -1.432          |
| 4      | Ethylene glycol                    | C <sub>2</sub> H <sub>6</sub> O <sub>2</sub>    | 0.81  | 1.26  | 3.095           | 0.755           | -1.183          |
| 5      | Ethanol amine                      | C <sub>2</sub> H <sub>7</sub> ON                | 1.1   | 2.49  | 3.356           | 2.117           | 2.229           |
| 6      | Allyl alcohol                      | C <sub>3</sub> H <sub>6</sub> O                 | 0.2   | 2.20  | 3.254           | 1.003           | 0.727           |
| 7      | Isopropanol                        | C <sub>3</sub> H <sub>8</sub> O                 | 2.0   | 2.40  | 2.882           | -1.473          | -0.321          |
| 8      | Ethylene glycol monomethyl ether   | C <sub>3</sub> H <sub>8</sub> O <sub>2</sub>    | 0.50  | 1.684 | 1.539           | 0.269           | -0.317          |
| 9      | Glycerol                           | C <sub>3</sub> H <sub>8</sub> O <sub>3</sub>    | 0.87  | 1.217 | 0.715           | 1.184           | -0.589          |
| 10     | <i>n</i> -Butanol                  | C <sub>4</sub> H <sub>10</sub> O                | 2.04  | 2.594 | 1.111           | -1.716          | 0.297           |
| 11     | <i>sec</i> -Butanol                | C <sub>4</sub> H <sub>10</sub> O                | 1.87  | 2.594 | 1.303           | -1.748          | 0.261           |
| 12     | <i>iso</i> -Butanol                | C <sub>4</sub> H <sub>10</sub> O                | 1.66  | 2.60  | 1.346           | -1.729          | 0.253           |
| 13     | Ethylene glycol mono ethyl ether   | C <sub>4</sub> H <sub>10</sub> O <sub>2</sub>   | 1.58  | 1.955 | -0.051          | -0.807          | -0.372          |
| 14     | Diethylene glycol                  | C <sub>4</sub> H <sub>10</sub> O <sub>3</sub>   | 0.15  | 1.51  | -1.301          | -0.052          | -0.849          |
| 15     | Diethanol amine                    | C <sub>4</sub> H <sub>11</sub> O <sub>2</sub> N | 0.1   | 2.13  | -1.184          | 0.902           | 1.181           |
| 16     | Furfuril alcohol                   | C <sub>5</sub> H <sub>6</sub> O <sub>2</sub>    | 0.534 | 1.796 | -0.534          | 3.320           | 1.729           |
| 17     | 1-Pentanol                         | C <sub>5</sub> H <sub>12</sub> O                | 1.61  | 2.727 | -0.478          | -2.472          | 0.245           |
| 18     | <i>iso</i> -Amyl alcohol           | C <sub>5</sub> H <sub>12</sub> O                | 0.162 | 2.740 | -0.020          | -1.911          | 0.630           |
| 19     | 2-Isopropoxy ethanol               | C <sub>5</sub> H <sub>12</sub> O <sub>2</sub>   | 0.12  | 2.154 | -0.985          | -0.936          | 0.176           |
| 20     | Phenol                             | C <sub>6</sub> H <sub>6</sub> O                 | 1.68  | 2.26  | -1.865          | 0.110           | -0.267          |
| 21     | Resorcinol                         | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>    | 1.5   | 1.89  | -1.563          | 1.505           | 0.062           |
| 22     | Quinol                             | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>    | 1.00  | 1.89  | -1.415          | 1.435           | 0.373           |
| 23     | Phloroglucinol                     | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub>    | 0.468 | 1.523 | -2.343          | 2.158           | -0.020          |
| 24     | Cyclohexanol                       | C <sub>6</sub> H <sub>12</sub> O                | 0.379 | 2.828 | -1.487          | -3.227          | -0.162          |
| 25     | Diacetone alcohol                  | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub>   | 0.68  | 2.538 | -1.980          | -0.687          | 0.994           |
| 26     | <i>d</i> -Glucconic acid           | C <sub>6</sub> H <sub>12</sub> O <sub>7</sub>   | 0.350 | 0.900 | -7.238          | 3.295           | -1.837          |
| 27     | Butyl cellosolve                   | C <sub>6</sub> H <sub>14</sub> O <sub>2</sub>   | 1.68  | 2.305 | -3.233          | -1.349          | -0.049          |
| 28     | Hexylene glycol                    | C <sub>6</sub> H <sub>14</sub> O <sub>2</sub>   | 0.02  | 2.305 | -2.231          | -0.992          | -0.430          |
| 29     | Diethylene glycol mono ethyl ether | C <sub>6</sub> H <sub>14</sub> O <sub>3</sub>   | 0.58  | 2.173 | -4.840          | -1.268          | -0.797          |



$$\text{ThOD of } C_c H_h = 32 (c + h/4)/(12c + h) \quad \dots (1)$$

When the molecule contains oxygen, the oxygen demand from the atmosphere decreases and it is reflected in the denominator of the equation. For a compound C<sub>c</sub>H<sub>h</sub>O<sub>o</sub> the ThOD value can be evaluated from Eqn (2).

$$\text{ThOD (C<sub>c</sub>H<sub>h</sub>O<sub>o</sub>)} = 32 (c + h/4 - o/2) / (12c + h + 16o) \quad \dots (2)$$

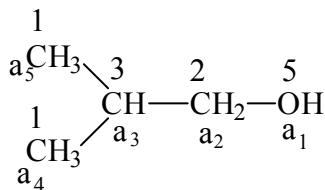
Similarly, when the organic molecule contains sulphur and nitrogen the ThOD can be determined by considering the conversion of sulphur to sulphur dioxide and nitrogen to nitrate (NO<sub>3</sub><sup>-</sup>) (Eqn 3).

$$\text{ThOD (C<sub>c</sub>H<sub>h</sub>O<sub>o</sub>N<sub>n</sub>S<sub>s</sub>)} = 32 (c + h/4 - o/2 + 3n/2 + s) / (12c + h + 16o + 14n + 32s) \quad \dots (3)$$

In the standard BOD<sub>5</sub> day test, nitrification does not occur within the time frame. Hence the compound containing nitrogen has a very low BOD<sub>5</sub> value when compared to theoretical oxygen demand (ThOD).

#### Evaluation of molecular descriptors

Molecular descriptors derived from structural graph have been applied successfully on QSAR studies<sup>2-6</sup>. Fungicidal and mutagenic activities have been well correlated with molecular parameters<sup>8-10</sup>.


In the present study different types of molecular parameters have been evaluated for a set of alcohols with available BOD<sub>5</sub> values.

The molecular descriptors IC, SIC, CIC, W,  $\bar{W}$ , I<sub>D</sub><sup>W</sup>, I<sub>D</sub> $\bar{W}$ , <sup>1</sup> $\chi$  and <sup>1</sup> $\chi^v$  have been evaluated by using methods reported earlier<sup>11</sup>. For evaluation of V<sub>c</sub> and V<sub>bc</sub> the constitutional graph of a molecule is

considered where weightage to each constituting atom other than hydrogen is assigned as  $(Z_i - H)$  where  $Z_i$  is the valence of atom  $Z$  and,  $H$  is the number of hydrogen atom attached to it<sup>11</sup>.

An illustration for evaluation of  $V_c$  and  $V_{bc}$  of *iso*-butanol is given below. In the constitutional graph the weights are given to each atom (vertex).

### Illustration



Constitutional molecular graph of *iso*-butanol where the vertex weight is given by using the equation ( $\delta_i^V = Z_i - H_i$ ).

$$V_c = \sum_{i=1}^n a_i \quad \dots (4)$$

$$a_i = \sum_{i=1}^n \prod_{j=1}^n \delta_j^{-1/2} \quad \dots$$

where  $n$  is the number of atoms other than hydrogen; and

$$V_{bc} = \sum_{i=1}^k (a_i a_j)^{-1/2} \quad \dots (5)$$

where  $k$  is the number of bonds and  $i$  and  $j$  are the adjacent atoms.

The ThOD and molecular parameters, calculated by the above methods are given in **Tables II** and **III**.

Multiple regression analysis was used to construct the regression models and the models were tested from student 't' test, F-statistics and correlation coefficient 'r'. In the regression model  $N$  stands for number of data points and RMS for root mean square.

### Results and Discussion

#### Interrelationship of molecular parameters

The correlation matrix of BOD, ThOD and all molecular parameters is presented in **Table IV**. Among all parameters  $V_{bc}$  is found to correlate well with the BOD values ( $r = -0.3176$ ) as well as with ThOD ( $r = -0.3813$ ).

In each class of parameters the constituent parameters have correlation coefficients in the range of 0.5922-0.9925 except among IC and ThOD. Information content parameters derived from total molecular graph, do not correlate well with any of the

molecular parameters. However, SIC and CIC have a good interrelationship with  $r = 0.9296$ . Similarly, ThOD derived from complete molecular formula, does not have good correlation with any other parameters ( $r = -0.0089$  to  $-0.4038$ ). As the value depends on the constitution of the molecule, one can assume a good quantitative relationship of ThOD with the TIs. A multiple regression analysis of all the parameters evaluated here, with ThOD, however, resulted in a correlation coefficient of 0.8608 and  $F$  of 3.812. A large number of variables have 't' values less than 1. By excluding these variables a relatively good regression model is obtained (Eqn 6) with  $r = 0.8331$  and  $F = 13.61$  with 't' values greater than 1.8. The TIs, which contribute the most, are based on valence terms, which differentiate hetero-atoms from carbon.

$$\text{ThOD} = -0.038 + (2.682 \pm 1.251) \text{ SIC} + (0.291 \pm 0.158) \text{ I}_D^W + (0.796 \pm 0.246) {}^1\chi^V - (0.707 \pm 0.124) V_{bc} \quad \dots (6)$$

$$N = 29, r = 0.8331, F = 13.61, \text{ RMS} = 0.101$$

To ordinate the parameters, the parameters have been subjected to principal component analysis (PCA). PCA helps in generating new parameters, which contain the characteristics of all the parameters to some extent and thus reduces the number of parameters. The results of PCA (**Table V**) reveal that the first principal component ( $PC_1$ ) can explain 64.3% variance of the total data set whereas 97.5% variance can be explained by considering first five principal components ( $PC_1$  to  $PC_5$ ). The principal components are further correlated with the molecular parameters to find out the contribution of each parameter in corresponding PC (**Table VI**). This analysis also enables to classify the parameters into subgroups. The results reveal that IC constitutes a single class whereas ThOD, CIC and SIC can be clubbed to one class and all the other parameters constitute another class.

#### Interrelationship of BOD with ThOD

From the scatter plot of BOD and ThOD (**Figure 1**) the alcohols are further classified into four sets.

When subjected to multiple regression analysis the BOD data of set I (**Table VII**) are found to correlate well with ThOD value ( $r = 0.98$ ) with a slope of 0.9389 and intercept -0.3790 (Eqn 7). The slope ensures the complete decomposition of organic materials of this set by the concerned micro-organisms within the stipulated time period. This set

**Table II**—IC, SIC, CIC, W,  $\bar{W}$  and  $I_D^W$  values of 29 different alcohols

| Sl.No | Compd                              | IC     | SIC    | CIC    | $\bar{W}$ | W      | $I_D^W$  |
|-------|------------------------------------|--------|--------|--------|-----------|--------|----------|
| 1     | Methanol                           | 1.7925 | 0.6934 | 0.7925 | 1.00      | 0.0000 | 0.0000   |
| 2     | Ethanol                            | 1.8800 | 0.5931 | 1.2900 | 4.00      | 1.3333 | 6.0000   |
| 3     | 2-Chloroethanol                    | 1.8800 | 0.5931 | 1.2900 | 10.00     | 1.6666 | 24.4644  |
| 4     | Ethylene glycol                    | 1.9219 | 0.5785 | 1.4000 | 10.00     | 1.6666 | 24.4644  |
| 5     | Ethanol amine                      | 2.5503 | 0.7372 | 0.9091 | 10.00     | 1.6666 | 24.4644  |
| 6     | Allyl alcohol                      | 2.1610 | 0.6505 | 1.1610 | 10.00     | 1.6666 | 24.4644  |
| 7     | <i>iso</i> -Propanol               | 1.7807 | 0.4967 | 1.8043 | 9.00      | 1.5000 | 22.5293  |
| 8     | Ethylene glycol monomethyl ether   | 2.0349 | 0.5499 | 1.6655 | 20.00     | 2.0000 | 62.9288  |
| 9     | Glycerol                           | 2.1560 | 0.5663 | 1.6514 | 31.00     | 2.0667 | 116.5605 |
| 10    | <i>n</i> -Butanol                  | 1.8716 | 0.4790 | 2.0353 | 20.00     | 2.0000 | 62.9288  |
| 11    | <i>sec</i> -Butanol                | 1.8716 | 0.4790 | 2.0353 | 18.00     | 1.8000 | 57.5489  |
| 12    | <i>iso</i> -Butanol                | 1.8716 | 0.4790 | 2.0353 | 18.00     | 1.800  | 57.5489  |
| 13    | Ethylene glycol mono ethyl ether   | 1.9197 | 0.4799 | 2.0803 | 35.00     | 2.3333 | 129.6505 |
| 14    | Diethylene glycol                  | 1.9698 | 0.4819 | 2.1176 | 56.00     | 2.6667 | 233.4633 |
| 15    | Diethanol amine                    | 2.3921 | 0.5737 | 1.7777 | 56.00     | 2.6667 | 233.4633 |
| 16    | Furfuril alcohol                   | 2.6535 | 0.7171 | 1.0469 | 51.00     | 2.4286 | 222.2741 |
| 17    | 1-Pentanol                         | 1.7917 | 0.4297 | 2.3783 | 35.00     | 2.3333 | 129.6505 |
| 18    | <i>iso</i> -Amyl alcohol           | 1.9447 | 0.4664 | 2.2252 | 32.00     | 2.1333 | 119.7353 |
| 19    | 2-Isopropoxy ethanol               | 2.0346 | 0.4789 | 2.2133 | 52.00     | 2.4762 | 218.184  |
| 20    | Phenol                             | 1.9143 | 0.5173 | 1.7861 | 88.00     | 2.4444 | 443.3713 |
| 21    | Resorcinol                         | 2.3513 | 0.6175 | 2.0000 | 61.00     | 2.1786 | 284.4908 |
| 22    | Quinol                             | 2.2359 | 0.5872 | 1.5714 | 62.00     | 2.2143 | 288.2663 |
| 23    | Phloroglucinol                     | 2.3219 | 0.5943 | 1.5850 | 84.00     | 2.3333 | 422.1607 |
| 24    | Cyclohexanol                       | 1.6341 | 0.3847 | 2.6139 | 42.00     | 2.0000 | 178.7029 |
| 25    | Diacetone alcohol                  | 2.1815 | 0.5047 | 2.1404 | 66.00     | 2.3571 | 307.1556 |
| 26    | <i>d</i> -Gluconic acid            | 2.4627 | 0.5303 | 2.1812 | 200.0     | 2.5641 | 1191.087 |
| 27    | Butyl cellosolve                   | 1.9658 | 0.4408 | 2.4937 | 84.00     | 3.0000 | 383.6803 |
| 28    | Hexylene glycol                    | 2.1060 | 0.4723 | 2.3534 | 66.00     | 2.3570 | 307.1556 |
| 29    | Diethylene glycol mono ethyl ether | 1.8403 | 0.4068 | 2.6833 | 120.0     | 3.3333 | 590.0267 |

**Table III**— $\bar{I}_D^W$ ,  $I_D^W$ ,  $^1\chi$ ,  $^1\chi^v$ ,  $V_c$  and  $V_{bc}$  values of 29 different alcohols

| Sl.No. | Compd                            | $\bar{I}_D^W$ | $I_D^W$ | $^1\chi$ | $^1\chi^v$ | $V_c$   | $V_{bc}$ |
|--------|----------------------------------|---------------|---------|----------|------------|---------|----------|
| 1      | Methanol                         | 0.0000        | 0.0000  | 1.000    | 0.4472     | 2.3416  | 0.8789   |
| 2      | Ethanol                          | 1.5000        | 2.0000  | 1.4142   | 1.0233     | 4.8334  | 1.2660   |
| 3      | 2-Chloroethanol                  | 2.4464        | 4.0774  | 1.9142   | 1.0835     | 5.4006  | 2.1253   |
| 4      | Ethylene glycol                  | 2.4464        | 4.0774  | 1.9142   | 1.1324     | 5.6679  | 2.0238   |
| 5      | Ethanol amine                    | 2.4464        | 4.0774  | 1.9142   | 1.2245     | 6.1705  | 1.8735   |
| 6      | Allyl alcohol                    | 2.4464        | 4.0774  | 1.9142   | 1.1327     | 5.9049  | 1.9858   |
| 7      | <i>iso</i> -Propanol             | 2.5032        | 3.7549  | 1.4689   | 1.4129     | 8.0378  | 1.5539   |
| 8      | Ethylene glycol monomethyl ether | 3.1464        | 6.2929  | 2.4142   | 1.5131     | 9.4764  | 2.4098   |
| 9      | Glycerol                         | 3.7600        | 7.7707  | 2.8081   | 1.7071     | 9.6284  | 2.9263   |
| 10     | <i>n</i> -Butanol                | 3.1464        | 6.2929  | 2.4142   | 2.0233     | 10.7928 | 1.8682   |

—Contd

**Table III**— $\bar{I}_D^W$ ,  $I_D^W$ ,  $^1\chi$ ,  $^1\chi^v$ ,  $V_c$  and  $V_{bc}$  values of 29 different alcohols—*Contd*

| Sl.No. | Compd                              | $\bar{I}_D^W$ | $I_D^W$ | $^1\chi$ | $^1\chi^v$ | $V_c$   | $V_{bc}$ |
|--------|------------------------------------|---------------|---------|----------|------------|---------|----------|
| 11     | <i>sec</i> -Butanol                | 3.1972        | 5.7549  | 2.2700   | 1.9509     | 11.5879 | 1.7960   |
| 12     | <i>iso</i> -butanol                | 3.1972        | 5.7549  | 2.2700   | 1.8792     | 11.3732 | 1.8120   |
| 13     | Ethylene glycol mono ethyl ether   | 3.7043        | 8.64337 | 2.9142   | 2.1007     | 10.8987 | 2.7802   |
| 14     | Diethylene glycol                  | 4.1689        | 11.1173 | 3.4142   | 2.2098     | 11.6124 | 3.5320   |
| 15     | Diethanol amine                    | 4.1689        | 11.1173 | 3.4142   | 2.3396     | 12.4507 | 3.2974   |
| 16     | Furfuril alcohol                   | 4.3583        | 10.5843 | 3.4318   | 2.0649     | 11.3339 | 4.2480   |
| 17     | 1-Pentanol                         | 3.7043        | 8.6433  | 2.9142   | 2.5233     | 13.7067 | 2.2125   |
| 18     | <i>iso</i> -Amyl alcohol           | 3.7417        | 7.9823  | 2.7700   | 2.3792     | 14.4222 | 2.1335   |
| 19     | 2-Isopropoxy ethanol               | 4.1958        | 10.3897 | 2.1927   | 2.4953     | 14.8089 | 3.0625   |
| 20     | Phenol                             | 5.0383        | 12.3159 | 3.3938   | 2.1343     | 12.0231 | 4.0044   |
| 21     | Resorcinol                         | 4.6638        | 10.1604 | 3.7877   | 2.2686     | 13.4400 | 4.6058   |
| 22     | Quinol                             | 4.6494        | 10.2952 | 3.7877   | 2.2686     | 13.9204 | 4.5041   |
| 23     | Phloroglucinol                     | 5.0257        | 11.7267 | 4.1815   | 2.4029     | 14.5692 | 4.7568   |
| 24     | Cyclohexanol                       | 4.2548        | 8.5097  | 3.3938   | 3.0747     | 17.6806 | 2.7403   |
| 25     | Diacetone alcohol                  | 4.6539        | 10.9698 | 3.4165   | 2.6348     | 18.6833 | 2.8319   |
| 26     | <i>d</i> -Gluconic acid            | 5.9550        | 15.2703 | 5.9128   | 3.4737     | 21.4759 | 6.7183   |
| 27     | Butyl cellosolve                   | 4.5676        | 13.7029 | 3.6503   | 3.1007     | 16.7272 | 3.4441   |
| 28     | Hexylene glycol                    | 4.6539        | 10.9698 | 3.4165   | 2.8209     | 18.6417 | 2.9801   |
| 29     | Diethylene glycol mono ethyl ether | 4.9169        | 16.3896 | 4.4142   | 3.1780     | 16.6401 | 4.3984   |

**Table IV**—Cross-correlation matrix of TIs for a set of alcohols

|               | BOD    | ThOD   | IC     | SIC    | CIC   | W     | W     | $I_D^W$ | $\bar{I}_D^W$ | $I_D^W$ | $^1\chi$ | $^1\chi^v$ | $V_c$ | $V_{bc}$ |
|---------------|--------|--------|--------|--------|-------|-------|-------|---------|---------------|---------|----------|------------|-------|----------|
| BOD           | 1      |        |        |        |       |       |       |         |               |         |          |            |       |          |
| ThOD          | 0.312  | 1      |        |        |       |       |       |         |               |         |          |            |       |          |
| IC            | -0.235 | 0.039  | 1      |        |       |       |       |         |               |         |          |            |       |          |
| SIC           | -0.090 | -0.432 | -0.125 | 1      |       |       |       |         |               |         |          |            |       |          |
| CIC           | -0.015 | 0.404  | 0.143  | -0.930 | 1     |       |       |         |               |         |          |            |       |          |
| W             | -0.275 | -0.249 | 0.025  | -0.264 | 0.476 | 1     |       |         |               |         |          |            |       |          |
| W             | -0.253 | 0.092  | 0.119  | -0.490 | 0.666 | 0.673 | 1     |         |               |         |          |            |       |          |
| $I_D^W$       | -0.259 | -0.293 | 0.004  | -0.214 | 0.416 | 0.992 | 0.592 | 1       |               |         |          |            |       |          |
| $\bar{I}_D^W$ | -0.262 | -0.008 | 0.082  | -0.394 | 0.616 | 0.823 | 0.875 | 0.768   | 1             |         |          |            |       |          |
| $I_D^W$       | -0.297 | -0.032 | 0.098  | -0.419 | 0.640 | 0.877 | 0.912 | 0.813   | 0.943         | 1       |          |            |       |          |
| $^1\chi$      | -0.303 | -0.180 | -0.130 | -0.281 | 0.523 | 0.925 | 0.763 | 0.895   | 0.913         | 0.915   | 1        |            |       |          |
| $^1\chi^v$    | -0.230 | 0.221  | 0.112  | -0.940 | 0.835 | 0.793 | 0.825 | 0.738   | 0.885         | 0.900   | 0.854    | 1          |       |          |
| $V_c$         | -0.265 | 0.216  | 0.097  | -0.596 | 0.796 | 0.781 | 0.744 | 0.735   | 0.878         | 0.856   | 0.840    | 0.972      | 1     |          |
| $V_{bc}$      | -0.318 | -0.381 | 0.021  | -0.050 | 0.302 | 0.903 | 0.681 | 0.885   | 0.866         | 0.855   | 0.932    | 0.695      | 0.678 | 1        |

of compounds contains the aliphatic alcohols, and hydroxy aromatic compounds like phenol and resorcinol.

$$\text{BOD} = - (0.3790 \pm 0.1113) + (0.9389 \pm 0.0574) \text{ ThOD} \quad \dots (7)$$

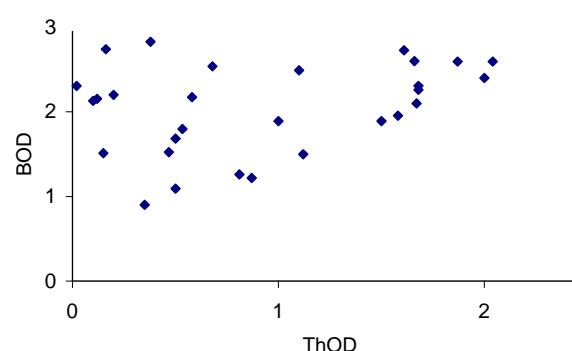
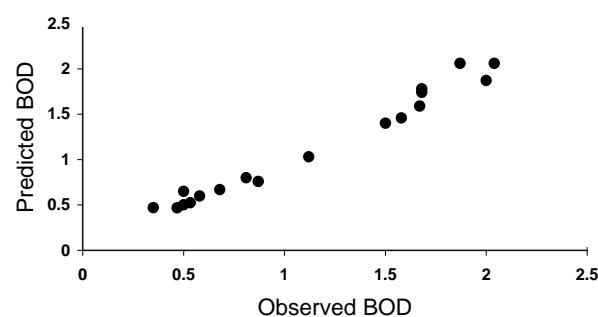
$r = 0.98$ ,  $F = 267.1$ ,  $\text{RMS} = 0.0139$

The second set of alcohols contains relatively complex alcohols and the BOD values are found to be significantly less than the ThOD values. In this set also a good correlation between BOD and ThOD is obtained with  $r = 0.99$  (Eqn 8) (**Table VIII**). Plot of observed vs. predicted BOD values of two sets of alcohols is shown in **Figure 2**. Thus this set of

**Table V**—Eigen values, percent of variance and cumulative percent of variance of molecular parameters in principal component analysis

| Molecular Parameters | Eigen values | Percent of variance | Cumulative percent of variance |
|----------------------|--------------|---------------------|--------------------------------|
| PC <sub>1</sub>      | 8.353        | 64.3                | 64.3                           |
| PC <sub>2</sub>      | 2.341        | 18.0                | 88.3                           |
| PC <sub>3</sub>      | 1.012        | 7.8                 | 90.0                           |
| PC <sub>4</sub>      | 0.5496       | 4.2                 | 94.3                           |
| PC <sub>5</sub>      | 0.4137       | 3.2                 | 97.5                           |
| PC <sub>6</sub>      | 0.1615       | 1.2                 | 98.7                           |
| PC <sub>7</sub>      | 0.0679       | 0.5                 | 99.2                           |
| PC <sub>8</sub>      | 0.0434       | 0.3                 | 99.6                           |
| PC <sub>9</sub>      | 0.0267       | 0.2                 | 99.8                           |
| PC <sub>10</sub>     | 0.0196       | 0.2                 | 100.0                          |
| PC <sub>11</sub>     | 0.0061       | 0.0                 | 100.0                          |
| PC <sub>12</sub>     | 0.0056       | 0.0                 | 100.0                          |
| PC <sub>13</sub>     | 0.0001       | 0.0                 | 100.0                          |

**Table VI**—Correlation coefficient of the TIs with PC<sub>1</sub>, PC<sub>2</sub> and PC<sub>3</sub>



| Molecular parameters                      | PC <sub>1</sub> | PC <sub>2</sub> | PC <sub>3</sub> |
|-------------------------------------------|-----------------|-----------------|-----------------|
| ThOD                                      | 0.0175          | -0.7323         | 0.6002          |
| IC                                        | -0.2817         | 0.7938          | 0.5018          |
| SIC                                       | 0.4817          | 0.8327          | 0.2365          |
| CIC                                       | -0.7028         | -0.6799         | -0.0886         |
| W                                         | -0.9150         | 0.2486          | -0.1992         |
| W̄                                        | -0.8649         | -0.1059         | 0.1969          |
| I <sub>D</sub> <sup>W</sup>               | -0.8690         | 0.2947          | -0.2475         |
| I <sub>D</sub> <sup>W̄</sup>              | -0.9563         | 0.0576          | 0.1397          |
| I <sub>D</sub> <sup>W̄</sup> <sub>1</sub> | -0.9705         | 0.0404          | 0.0555          |
| <sup>1</sup> χ                            | -0.9526         | 0.2510          | -0.0326         |
| <sup>1</sup> χ <sup>v</sup>               | -0.9494         | -0.2518         | 0.0837          |
| V <sub>c</sub>                            | -0.9258         | -0.2186         | 0.1051          |
| V <sub>bc</sub>                           | -0.8650         | 0.4543          | -0.0703         |

alcohols can be considered under moderately biodegradable chemicals.

$$\text{BOD} = (0.1994 \pm 0.0163) \text{ ThOD} + (0.1650 \pm 0.0322) \quad \dots (8)$$

$$r = 0.99, F = 150.2, \text{ RMS} = 0.0002$$

The alcohols having a wide difference of BOD and ThOD values constitute the third set of the series. This set contains the nitrogenous compounds and also compounds with higher complexity than sets I and II. The BOD values are low (0.02 to 0.379). The ThOD

**Figure 1**—Classification of alcohols from the plot of BOD vs. ThOD**Figure 2**—Plot of observed vs. predicted BOD of two sets of alcohols**Table VII**—Results of multiple regression analysis of data set I

| Compd | Observed BOD | Predicted BOD |
|-------|--------------|---------------|
| 1     | 1.12         | 1.03          |
| 2     | 1.67         | 1.59          |
| 3     | 0.50         | 0.65          |
| 4     | 0.81         | 0.80          |
| 7     | 2.00         | 1.87          |
| 9     | 0.87         | 0.76          |
| 10    | 2.04         | 2.06          |
| 11    | 1.87         | 2.06          |
| 13    | 1.58         | 1.46          |
| 20    | 1.68         | 1.74          |
| 21    | 1.50         | 1.40          |
| 26    | 0.35         | 0.47          |
| 27    | 1.68         | 1.78          |

does not correlate well with the BOD values ( $r = 0.45$ ). Similarly, the fourth set contains four alcohols with BOD values ranging from 1.00 to 1.61 and ThOD varies from 1.89 to 2.7. In this set also the correlation between BOD and ThOD is poor ( $r = 0.201$ ).

**Table VIII**—Results of multiple regression analysis of data set II

| Compd | Observed BOD | Predicted BOD |
|-------|--------------|---------------|
| 8     | 0.500        | 0.501         |
| 16    | 0.534        | 0.523         |
| 23    | 0.468        | 0.469         |
| 25    | 0.680        | 0.671         |
| 29    | 0.580        | 0.598         |

### Multiple regression analysis with molecular parameters

When all the BOD values were subjected to multiple regression analysis with the TIs a poor correlation coefficient ( $r = 0.6747$ ) was obtained. Hence subsequently, the BOD values of individual set of compounds were analysed separately.

The BOD values of first set of compounds have a correlation coefficient of 0.999 with all the TIs but some TIs have 't' values less than 2.0 (selection of 2.0 is arbitrary). By excluding these variables an optimized equation is obtained with  $r = 0.999$  and  $F = 138.1$ .

With a view to reducing the size of molecular parameters, principal components of the topological parameters have been derived and used in multiple regression analysis for each set of alcohols.

The first four principal components have been correlated with the BOD values to be assured that BOD values have some topological contributions. In the first set of data  $PC_1$ ,  $PC_3$  and  $PC_4$  could explain the result significantly to an extent of 98%. All the PCs have significant 't' values ranging from 3.74 - 8.50.  $PC_2$ , which has a major contribution from ThOD and information contents exhibits a poor 't' value.

Thus it can be suggested that molecular topology also contributes to the BOD values of this set of alcohols.

But in case of set II, the major contribution is due to  $PC_2$  and  $PC_4$  having 't' values -7.97 and 5.27, respectively. These principal components have major contributions from ThOD and information contents (SIC and CIC).

Thus the alcohols of set I can be classified as highly degradable, those of set II as moderately degradable and the rest as low-degradable alcohols.

### Acknowledgement

One of the authors (MK) thanks the CSIR, New Delhi, for the research associateships. Author (BKM) thanks the UGC, New Delhi, for the IX Plan Research Award and for DRS programme.

### References

- 1 Verschaeren K, in *Handbook of environmental data on organic chemicals*, (Van Nostrand Reinhold Co., New York) 1977, pp 35.
- 2 Estrada E, *J Chem Inf Comput Sci*, 37, **1997**, 320.
- 3 Basak S C, Harriss D K & Magnuron V R, *J Pharm Sci*, 73, **1984**, 429.
- 4 Basak S C, *Med Sci Res*, 15, **1987**, 605.
- 5 Basak S C, Gieschen D P & Magnuron V R, *Env Toxicol Chem*, 3, **1984**, 191.
- 6 Kuanar M & Mishra B K, *Bull Chem Soc Japan*, 71, **1998**, 191.
- 7 Vracko M, *J Chem Inf Comput Sci*, 37, **1997**, 1035.
- 8 Samanta A K, Ray S K, Basak S C & Bose S K, *Arzneim-Forsch/Drug Res*, 32, **1982**, 1515.
- 9 Basak S C, Mills R D, Balaban A T & Gute B D, *J Chem Inf Comput Sci*, 41, **2001**, 671.
- 10 Basak S C & Grunwald G D, in *Proceeding of the XVI International Cancer Congress*, **1995**, pp 413.
- 11 (a) Kuanar M, Mishra R K & Mishra B K, *Indian J Chem*, 35A, **1996**, 1026.  
(b) Kuanar M & Mishra B K, *Indian J Chem*, 36A, **1997**, 571.